
Maya Nair
Dept of Computer Science,SIES,Sion(W)

JDBC Introduction

The JDBC API is a Java API that can access any kind of

tabular data, especially data stored in a Relational Database.

JDBC helps you to write java applications that manage these

three programming activities:

 Connect to a data source, like a database

 Send queries and update statements to the database

 Retrieve and process the results received from the

database in answer to your query

JDBC Product Components

JDBC includes four components:

1. The JDBC API —

The JDBC™ API provides programmatic access to relational
data from the Java™ programming language. Using the
JDBC API, applications can execute SQL statements, retrieve
results, and propagate changes back to an underlying data
source. The JDBC API can also interact with multiple data
sources in a distributed, heterogeneous environment.

The JDBC API is part of the Java platform, which includes
the Java™ Standard Edition (Java™ SE) and the Java™
Enterprise Edition (Java™ EE). The JDBC 4.0 API is divided
into two packages: java.sql and javax.sql. Both
packages are included in the Java SE and Java EE platforms.

2. JDBC Driver Manager —
The JDBC DriverManager class defines objects which can
connect Java applications to a JDBC driver.

file:///C:/Manoj/tutorial/jdbc/overview/index.html%23relational

Maya Nair
Dept of Computer Science,SIES,Sion(W)

DriverManager has traditionally been the backbone of
the JDBC architecture. It is quite small and simple.

The Standard Extension packages javax.naming and
javax.sql let you use a DataSource object registered
with a Java Naming and Directory Interface™ (JNDI) naming
service to establish a connection with a data source. You
can use either connecting mechanism.

3. JDBC Test Suite —
The JDBC driver test suite helps you to determine that JDBC
drivers will run your program. These tests are not
comprehensive or exhaustive, but they do exercise many of
the important features in the JDBC API.

4. JDBC-ODBC Bridge —
The Java Software bridge provides JDBC access via ODBC
drivers. Note that you need to load ODBC binary code onto
each client machine that uses this driver. As a result, the
ODBC driver is most appropriate on a corporate network
where client installations are not a major problem, or for
application server code written in Java in a three-tier
architecture.

JDBC Architecture

Two-tier and Three-tier Processing Models

The JDBC API supports both two-tier and three-tier

processing models for database access.

Figure 1: Two-tier Architecture for Data Access.

Maya Nair
Dept of Computer Science,SIES,Sion(W)

In the two-tier model, a Java applet or application talks

directly to the data source. This requires a JDBC driver that

can communicate with the particular data source being

accessed. A user's commands are delivered to the database or

other data source, and the results of those statements are sent

back to the user. The data source may be located on another

machine to which the user is connected via a network. This is

referred to as a client/server configuration, with the user's

machine as the client, and the machine housing the data

source as the server. The network can be an intranet, which,

for example, connects employees within a corporation, or it

can be the Internet.

In the three-tier model, commands are sent to a "middle tier"

of services, which then sends the commands to the data

source. The data source processes the commands and sends

the results back to the middle tier, which then sends them to

the user. MIS directors find the three-tier model very

attractive because the middle tier makes it possible to

maintain control over access and the kinds of updates that can

be made to corporate data. Another advantage is that it

simplifies the deployment of applications. Finally, in many

cases, the three-tier architecture can provide performance

advantages.

Figure 2: Three-tier Architecture for Data Access.

Maya Nair
Dept of Computer Science,SIES,Sion(W)

Until recently, the middle tier has often been written in

languages such as C or C++, which offer fast performance.

However, with the introduction of optimizing compilers that

translate Java byte code into efficient machine-specific code

and technologies such as Enterprise JavaBeans™, the Java

platform is fast becoming the standard platform for middle-

tier development. This is a big plus, making it possible to take

advantage of Java's robustness, multithreading, and security

features.

With enterprises increasingly using the Java programming

language for writing server code, the JDBC API is being used

more and more in the middle tier of three-tier architecture.

Some of the features that make JDBC a server technology are

its support for connection pooling, distributed transactions,

and disconnected row sets. The JDBC API is also what allows

access to a data source from a Java middle tier.

JDBC drivers.

 A JDBC driver can come from many sources: database

software, such as Java DB, a JDBC driver vendor such as

DataDirect, Oracle, MySQL, or an ISV/OEM such as Sun.

Maya Nair
Dept of Computer Science,SIES,Sion(W)

Your driver should include instructions for installing it. For a

JDBC driver written for specific Database Management

Systems (DBMS), installation consists of copying the driver

onto your machine. No special configuration is needed.

Types of Drivers

 There are many possible implementations of JDBC

drivers. These implementations are categorized as follows:

 Type 1 - drivers that implement the JDBC API

as a mapping to another data access API, such

as ODBC. Drivers of this type are generally

dependent on a native library, which limits their

portability. The JDBC-ODBC Bridge driver is

an example of a Type 1 driver.

 Type 2 - drivers that are written partly in the

Java programming language and partly in native

code. These drivers use a native client library

specific to the data source to which they

connect. Again, because of the native code, their

portability is limited.

 Type 3 - drivers that use a pure Java client and

communicate with a middleware server using a

database-independent protocol. The

middleware server then communicates the

client’s requests to the data source.

 Type 4 - drivers that are pure Java and

implement the network protocol for a specific

data source. The client connects directly to the

data source

Maya Nair
Dept of Computer Science,SIES,Sion(W)

The classes that we use for JDBC programming are contained

in the java.sql and javax.sql packages

java.sql Package

The key interfaces in the JDBC Core API are as follows:

1) java.sql.Driver / java.sql.DriverManager The Driver

object implements the acceptsURL(String url)method,

confirming its ability to connect to the URL the

DriverManager passes.Then the connect() method of the

Driver class is automatically invoked when user makes a

call to getConnection() method of the DriverManger

Class. It returns a connection object on successful

connection else it returns null .

static Connection getConnection(String url,String user, String

password) establishes a connection to the given

database and returns a Connection object.

Parameters: 1) url- the URL for the database

Maya Nair
Dept of Computer Science,SIES,Sion(W)

 2) user- the database login ID

 3) password -the database login

password

2) java.sql.Connection. The Connection object provides the

connection between the JDBC API and the database

management system the URL specifies. A Connection

represents a session with a specific database.

 Statement createStatement()

 creates a statement object that can be used to

execute SQL queries and updates without

parameters.

 void close()

 immediately closes the current connection.

Maya Nair
Dept of Computer Science,SIES,Sion(W)

3) java.sql.Statement. The Statement object acts as a

container for executing a SQL statement on a given

Connection.

 ResultSet executeQuery(String sql)

 executes the SQL statement given in the string

and returns a ResultSet to view the query result.

 Parameters: sql the SQL query

 int executeUpdate(String sql)

 executes the SQL INSERT, UPDATE, or

DELETE statement specified by the string. Also

used to execute Data Definition Language

(DDL) statements such as CREATE

TABLE.Returns the number of records affected,

or -1 for a statement without an update count.

 Parameters: sql the SQL statement

 Boolean execute(String sql)

Maya Nair
Dept of Computer Science,SIES,Sion(W)

 executes the SQL statement specified by the

string. Returns true if the statement returns a

result set, false otherwise. Use the getResultSet

or getUpdateCount method to obtain the

statement outcome.

 Parameters: sql the SQL statement

 int getUpdateCount()

 Returns the number of records affected by the

preceding updatestatement, or -1 if the

preceding statement was a statement without an

update count. Call this method only once per

executed statement.

 ResultSet getResultSet()

 Returns the result set of the preceding query

statement, or null if the preceding statement did

not have a result set. Call this method only once

per executed statement.

Maya Nair
Dept of Computer Science,SIES,Sion(W)

4) java.sql.ResultSet. The ResultSet object controls access to

the results of a given Statement in a structure that can be

traversed by moving a cursor and from which data can be

accessed using a family of getter methods.

 Boolean next()

makes the current row in the result set move forward

by one. Returns false after the last row. Note that you

must call this method to advance to the first row.

 Xxx getXxx(int columnNumber)

(coloumn no starts from 1 for the first coloumn)

 Xxx getXxx(String columnName)

(Xxx is a type such as int, double, String, Date, etc.)

return the value of the column with column index

columnNumber or with column names, converted to

the specified type. Not all type conversions are legal.

Maya Nair
Dept of Computer Science,SIES,Sion(W)

Maya Nair
Dept of Computer Science,SIES,Sion(W)

 int findColumn(String columnName)

gives the column index associated with a column name.

Maya Nair
Dept of Computer Science,SIES,Sion(W)

 void close()

immediately closes the current result set.

There are three exceptions included in the package namely

a) SQLException : An exception that provides information on

a database access error or other errors. Each SQLException

provides several kinds of information:

 a string describing the error. This is used as the Java

Exception message, available via the method getMesage.

 a "SQLstate" string, which follows either the XOPEN

SQLstate conventions or the SQL 99 conventions. The

values of the SQLState string are described in the

appropriate spec. The DatabaseMetaData method

getSQLStateType can be used to discover whether the

driver returns the XOPEN type or the SQL 99 type.

 an integer error code that is specific to each vendor.

Normally this will be the actual error code returned by

the underlying database.

 a chain to a next Exception. This can be used to provide

additional error information.

b) BatchUpdateException

An exception thrown when an error occurs during a batch

update operation. In addition to the information provided by

Maya Nair
Dept of Computer Science,SIES,Sion(W)

SQLException, a BatchUpdateException provides the

update counts for all commands that were executed

successfully during the batch update, that is, all commands

that were executed before the error occurred. The order of

elements in an array of update counts corresponds to the

order in which commands were added to the batch.

 c) SQLWarning : An exception that provides information on

database access warnings. Warnings are silently chained to the

object whose method caused it to be reported. Warnings may

be retrieved from Connection, Statement, and ResultSet

objects. Trying to retrieve a warning on a connection after it

has been closed will cause an exception to be thrown. Similarly,

trying to retrieve a warning on a statement after it has been

closed or on a result set after it has been closed will cause an

exception to be thrown. Note that closing a statement also

closes a result set that it might have produced.

http://download.oracle.com/docs/cd/E17476_01/javase/1.4.2/docs/api/java/sql/SQLException.html

Maya Nair
Dept of Computer Science,SIES,Sion(W)

d) Data Truncation : An exception that reports a

DataTruncation warning (on reads) or throws a DataTruncation

exception (on writes) when JDBC unexpectedly truncates a

data value.

There are seven basic steps to using JDBC to access a

database.

They are

1. Import the java.sql package

2. Load and register the driver.

3. Establish a connection to the database driver.

4. Create a statement.

5. Execute the statement.

6. Retrieve the results.

7. Close the statement and connection.

Maya Nair
Dept of Computer Science,SIES,Sion(W)

An example jdbc program

import java.sql.*; // imports the JDBC core package

public class JdbcDemo{

public static void main(String args[]){

int qty;

float cost;

String name;

String desc;

// SQL Query string

String query = "SELECT * from stock";

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

// load the JDBC driver

Connection con = DriverManager.getConnection

("jdbc:odbc:inventory");

// get a connection to jdbcodbc driver and access dsn

inventory

Maya Nair
Dept of Computer Science,SIES,Sion(W)

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(query); // execute query

while (rs.next()) { // parse the results

name = rs.getString("stckid");

desc = rs.getString("stckname");

qty = rs.getInt("stckamt");

System.out.println(name+", "+desc+"\t: "+qty);

}

con.close();

}

catch(ClassNotFoundException e){

e.printStackTrace();

}

catch(SQLException e){

e.printStackTrace();

}

Maya Nair
Dept of Computer Science,SIES,Sion(W)

}}

The DriverManager Class

The java.sql.DriverManager provides basic services for

managing JDBC drivers. During initialization, the

DriverManager attempts to load the driver classes referenced in

the "jdbc.drivers" system property. Alternatively, a program

can explicitly load JDBC drivers at any time using

Class.forName(). This allows a user to customize theJDBC

drivers their applications use.

A newly loaded driver class should call registerDriver() to

make itself known to the DriverManager. Usually, the driver

does this internally.

When getConnection() is called, the DriverManager

attempts to locate a suitable driver from among those loaded at

initialization and those loaded explicitly using the same class

loader as the current applet or application. It does this by

Maya Nair
Dept of Computer Science,SIES,Sion(W)

polling all registered drivers, passing the URL of the database

to the drivers' acceptsURL()method.

There are three forms of the getConnection() method,

allowing the user to pass additional arguments in addition to

the URL of the database:

a) public static synchronized Connection

getConnection(String url)

throwsSQLException

b) public static synchronized Connection

getConnection(String url,String user,String

password)throws SQLException

c) public static synchronized Connection

getConnection(String url,Properties

info)throwsSQLException

Note: When searching for a driver, JDBC uses the first

driver it finds that can successfully connect to the given URL.

It starts with the drivers specified in the sql.drivers list, in the

Maya Nair
Dept of Computer Science,SIES,Sion(W)

order given. It then tries the loaded drivers in the order in which

they are loaded.

JDBC(Database) URLs

A URL (Uniform Resource Locator) is an identifier for

locating a resource on the Internet. It can be thought of as an

address. A JDBC URL is a flexible way of identifying a

database so that the appropriate driver recognizes it and

establishes a connection with it. JDBC URLs allow different

drivers to use different schemes for naming databases. The

odbc sub protocol, for example, lets the URL contain attribute

values.

The standard syntax for JDBC URLs is shown here:

jdbc:<subprotocol>:<subname>

The three parts of a JDBC URL are broken down as

follows:

Maya Nair
Dept of Computer Science,SIES,Sion(W)

a) jdbc — The protocol. The protocol in a JDBC URL is

always jdbc.

b) <subprotocol> — The name of the driver or

connectivity mechanism, which may be supported by

one or more drivers

c) <subname> — A unique identifier for the database

For example, this is the URL to access the contacts

database through theJDBC-ODBC bridge:

jdbc:odbc:contacts

The odbc subprotocol has the special feature of allowing

any number of attribute values to be specified after the database

name, as shown here:

jdbc:odbc:<data-source-name>[;<attribute-

name>=<attribute-value>]*

Attributes passed in this way may include user id and

password, for example.

An eg URL for Oracle driver

Maya Nair
Dept of Computer Science,SIES,Sion(W)

jdbc:Oracle:thin:@server:1521:Oracle8i

Connection Interface

A Connection object represents a connection with a

database. A connection session includes the SQL statements

that are executed and the results that are returned over that

connection. A single application can have one or more

connections with a singledatabase, or it can have connections

with many different databases.

Opening a connection

The standard way to establish a connection with a database

is to call the method getConnection() on either a DataSource or

a DriverManager. The Driver method connect() uses this URL

to establish the connection.

A user can bypass the JDBC management layer and call

Driver methods directly. This can be useful in the rare case that

two drivers can connect to a database and the user wants

explicitly to select a particular driver. Usually, however, it is

Maya Nair
Dept of Computer Science,SIES,Sion(W)

much easier to just let the DataSource class or the

DriverManager class open a connection.

Having established a connection to the database, you are

now in a position to execute a SQL statement.

SQL Statements

Once a connection is established, it is used to pass SQL

statements to the database. Since there are no restrictions

imposed on the kinds of SQL statements that may be sent to a

DBMS using JDBC, the user has a great deal of flexibility to

use database-specific statements or even non-SQL statements.

Statement Interface

The JDBC core API provides these three classes for

sending SQL statements to the database:

1. Statement. A Statement object is used for sending simple

SQL statements. Statements are created by the method

createStatement() via a connection object.

Maya Nair
Dept of Computer Science,SIES,Sion(W)

2. PreparedStatement. A PreparedStatement is a SQL

statement that is precompiled and stored in a

PreparedStatement object. This object can then be used to

execute this statement multiple times.They are created by

the method prepareStatement() via a connection object.

3. CallableStatement. CallableStatement is used to execute

SQL stored procedures. CallableStatements are created by

the method prepareCall() via connection object.

 Statement object

 A Statement object is used for executing a static SQL

statement and obtaining the results it produces. Statement

defines these three methods for executing SQL statements,

which handle SQL commands returning different kinds of

results:

Maya Nair
Dept of Computer Science,SIES,Sion(W)

1. executeUpdate(String sql): Execute a SQL INSERT,

UPDATE, or DELETE statement, which returns

either a count of rows affected or zero.

2. executeQuery(String sql): Execute a SQL statement

that returns a single ResultSet.

3. execute(String sql): Execute a SQL statement that

may return multiple results.

The executeUpdate() method is used for SQL commands

such as INSERT, UPDATE,and DELETE, which return a

count of rows affected rather than a ResultSet; or for DDL

commands such as CREATE TABLE, which returns nothing,

in which case the return value is zero.

The executeQuery() method is used for SQL queries

returning a single ResultSet.

The execute method is used to execute a SQL statement

that may return multiple results. In some situations, a single

SQL statement may return multiple ResultSets and/or update

Maya Nair
Dept of Computer Science,SIES,Sion(W)

counts. The execute() method returns boolean true if the SQL

statement returns a ResultSet and false if the return is an update

count.

The Statement object defines the following supporting

methods:

 getMoreResults()

 getResultSet()

 getUpdateCount()

These methods let you navigate through multiple results.

You can use getResultSet() or getUpdateCount() to retrieve the

result and getMoreResults() to move to any subsequent results.

PreparedStatement Object

PreparedStatements are nothing more than statements that

are precompiled. Precompilation means that these statements

can be executed more efficiently than simple statements,

particularly in situations where a Statement is executed

repeatedly in a loop.

Maya Nair
Dept of Computer Science,SIES,Sion(W)

PreparedStatements can contain placeholders for variables

known as IN parameters, which are set using setter methods.

The placeholder is represented by a ‘?’ in the query string .Each

place holder is numbered starting from 1.

A typical setter method looks like this:

public void setXXX(int parameterIndex, XXX x) throws

SQLException where XXX can be any primitive data types like

int ,float etc or objects like String,Date,Time etc. and the

parameter index is the position number of the place holder that

begins with 1.

The following is the list of all the set methods in the

primitive data type category:

setBoolean() setByte() setInt() setLong()

setFloat() setDouble() setNull() setShort()

The following is the list of set methods for object

parameters:

Maya Nair
Dept of Computer Science,SIES,Sion(W)

 setString() setBignum() setBytes()

 setDate() setTime() setObject()

 setTimeStamp()

 An example program using prepared statements .In this

the following line, which pstmt.setInt(1,2) sets integer

parameter #1(the first placeholder) equal to 2:

Using a PreparedStatement

Import java.sql.*;

public class PreparedStmt{

public static void main(String args[]){

int qty;

float cost;

String name;

String desc;

String query = ("SELECT * FROM Stock WHERE

Item_Number= ?";

try {

Maya Nair
Dept of Computer Science,SIES,Sion(W)

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con =

DriverManager.getConnection ("jdbc:odbc:Inventory");

PreparedStatement pstmt = con.prepareStatement(query);

pstmt.setInt(1, 2);//set the first place holder as value 2

ResultSet rs = pstmt.executeQuery();

while (rs.next()) {

name = rs.getString("Name");

desc = rs.getString("Description");

qty = rs.getInt("Qty");

cost = rs.getFloat("Cost");

System.out.println(name+", "+desc+"\t: "+qty+"\t@

$"+cost);

}

}

catch(ClassNotFoundException e){

e.printStackTrace();

Maya Nair
Dept of Computer Science,SIES,Sion(W)

}

catch(SQLException e){

e.printStackTrace();

}

}

}

The methods setBytes and setString are capable of sending

unlimited amounts of data. You can also handle large amounts

of data by setting an IN parameter to a Java

input stream(for images).

JDBC provides these three methods for setting IN

parameters to input streams:

 setBinaryStream(for streams containing

uninterpreted bytes)

 setAsciiStream (for streams containing ASCII

characters)

Maya Nair
Dept of Computer Science,SIES,Sion(W)

 setUnicodeStream (for streams containing Unicode

characters)

When the statement is executed, the JDBC driver makes

repeated calls to the inputstream, reading its contents and

sending them to the database as the actual

parameter value.

The setNull() method allows you to send a NULL value to the

database as an IN parameter. You can also send a NULL to the

database by passing a Java null value to a setXXX()method.

The setObject() method has three forms.In its simplest

form,setObject() takes two parameters.The first is the position

of the place holderand the second is the Object.Before sending

the Object to the database the driver converts the Object to the

standard SQL data type for that object. The second form of the

setObject() method adds another input parameter. In this the

third parameter represents a datatype to which explicitly

convert the Object to.

Maya Nair
Dept of Computer Science,SIES,Sion(W)

CallableStatement Object

The CallableStatement object allows you to call a database

stored procedure from a Java application. A CallableStatement

object contains a call to a stored procedure; it does not contain

the stored procedure itself, as the stored procedure is stored in

the database. In the below example, we create and use a stored

procedure.

import java.sql.*;

public class CallableStmt{

public static void main(String args[]){

String name;

String storedProc = "create proc SHOWNAME as select

* from stock ";

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Maya Nair
Dept of Computer Science,SIES,Sion(W)

Connection con = DriverManager.getConnection

("jdbc:odbc:inventory");

Statement stmt = con.createStatement();

stmt.executeUpdate(storedProc);

CallableStatement cs = con.prepareCall("{call

SHOWNAME}");

ResultSet rs = cs.executeQuery();

while (rs.next()) {

name = rs.getString("stckname");

System.out.println(name);

}

}

catch(ClassNotFoundException e){

e.printStackTrace();

}

Maya Nair
Dept of Computer Science,SIES,Sion(W)

Scrollable and Updatable Result Sets

The next() method of the ResultSet class iterates over

the rows in a result set. That is certainly adequate for a program that needs
to analyze the data. But what if the user had to move both forward and backwards

in the resultset. Then we find that the resultset created must have scrollable

capability.

Furthermore, once you display the contents of a result set to users, they
may be tempted to edit it.

To obtain scrolling result sets from your queries, you must obtain a different

Statement object with the method

Statement stat = conn.createStatement(type,

concurrency);

For a prepared statement, use the call
PreparedStatement stat =

conn.prepareStatement(query,type, concurrency);

The possible values of type and concurrency are listed as below

Maya Nair
Dept of Computer Science,SIES,Sion(W)

Methods in ResultSet interface for cursor positioning and getting the current

cursor position are as follows:

• boolean previous()

(JDBC 2) moves the cursor to the preceding row. Returns true if

the cursor is positioned on a row.

• int getRow()

(JDBC 2) gets the number of the current row. Rows are numbered

starting with 1.

• boolean absolute(int r)

(JDBC 2) moves the cursor to row r. Returns true if the cursor is

positioned on a row.

• boolean relative(int d)

(JDBC 2) moves the cursor by d rows. If d is negative, the cursor is

moved backward. Returns true if the cursor is positioned on a row.

• boolean first()

• boolean last()

(JDBC 2) move the cursor to the first or last row. Return true if the

cursor is positioned on a row.

• void beforeFirst()

• void afterLast()

 (JDBC 2) move the cursor before the first or after the last row.

• boolean isFirst()

• boolean isLast()

(JDBC 2) test if the cursor is at the first or last row.

• boolean isBeforeFirst()

• Boolean isAfterLast()

(JDBC 2) test if the cursor is before the first or after the last row.

Maya Nair
Dept of Computer Science,SIES,Sion(W)

Updating a ResultSet

To appreciate the simplicity of using Updatable ResultSet instead of SQL UPDATES,

it is worth looking first at what is involved in using Statement.executeUpdate() to

change a customer address.

The code to make this change looks like this:

stmt.executeUpdate(

"UPDATE Customers SET Street = '123 Main Street' +

"WHERE First_Name = 'Vito' AND Last_Name = 'Corleone'");

This is simple enough when you know how to identify the record to be

updated, but consider how much more complicated it would be if your application

were displaying the ResultSet in a JTable. Unless you go to considerable trouble to

keep track of the current record, it is quite difficult to identify to the RDBMS which

record to update.

Using an Updatable ResultSet simplifies the situation considerably. All you need to do

is set the cursor to the desired row and change the column value using a data-type-

specific update method. Here's an example:

rs.updateString("Street", "123 Main");

Since updates made to an Updatable ResultSet always affect the current row, you

must make sure you have moved the cursor to the correct row prior to making an

update.

Most of the ResultSet.update() methods take two parameters: the column to update

and the new value to put in that column. As with the getter methods, the column may

be specified using either the column name or the column number.

Table below summarizes the update methods for the UpdatableResultSet, showing

only the variant using column name as the specifier for reasons of space.

Maya Nair
Dept of Computer Science,SIES,Sion(W)

Note that after updating a column value in the ResultSet, you must call the ResultSet's

updateRow() method to make a permanent change in the database before moving the

cursor, since changes made using the update methods do not take

effect until updateRow() is called.

If you move the cursor to another row before calling updateRow(), the

updates will be lost, and the row will revert to its previous column

values.

You can specifically cancel updates any time before calling updateRow() by calling

the cancelRowUpdates() method. Once you have called updateRow(), however, the

Maya Nair
Dept of Computer Science,SIES,Sion(W)

cancelRowUpdates() method no longer works.

Inserting a New Row

In addition to supporting updates, an UpdatableResultSet supports the insertion and

deletion of entire rows. The ResultSet object has a row called the insert row, which is,

in effect, a dedicated row buffer in which you can build a new row.

The new row is created in a manner very similar to the row updates discussed earlier.

Simply follow these steps:

Move the cursor to the insert row, which is done by calling the method

moveToInsertRow().

2. Set a new value for each column in the row by using the appropriate update method.

3. Call the method insertRow() to insert the new row into the result set and,

simultaneously, into the

database.

Eg:Consider the following program fragment

String query=”select * from stock”;

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:Contacts");

Statement stmt = con.createStatement(

ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stmt.executeQuery(query);

rs.moveToInsertRow();

rs.updateInt("Contact_ID", 150);

rs.updateString("First_Name", "Nigel");

rs.updateString("Last_Name", "Thornebury");

rs.insertRow();

To move the cursor from the insert row back to the result set, you can use any of the

methods that put the cursor on a specific row: first, last, beforeFirst, afterLast, and

absolute. You can also use the methods previous and relative because the result set

maintains a record of the current row while accessing the insert row.

In addition, you can use a special method: moveToCurrentRow(), which can be called

only when the cursor is on the insert row. This method moves the cursor from the

insert row back to the row that was previously the current row.

Deleting a Row

Deleting a row in an UpdatableResultSet is very simple. All you have to do is move

the cursor to the row you want to delete and call the method deleteRow().

The example in the following code snippet shows how to delete the third row in a

result set by getting the ResultSet object, moving the cursor to the third row, and

using the deleteRow() method:

Maya Nair
Dept of Computer Science,SIES,Sion(W)

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:Contacts");

Statement stmt = con.createStatement(

ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stmt.executeQuery(query);

rs.absolute(3);

rs.deleteRow();

 Be aware that different JDBC drivers handle deletions in different ways.

Some remove a deleted row so that it is no longer visible in a result set,

and others insert a blank row where the deleted row used to be.

Note: Remember that if you modify data in a ResultSet object, the change will always

be visible if you close the ResultSet and reopen it by executing the same query again

after the changes have been made.

Another way to get the most recent data is to use the method refreshRow(), which

gets the latest values for a row straight from the database. This is done by positioning

the cursor to the desired row and calling refreshRow(), as shown here:

rs.absolute(3);

rs.refreshRow();.

The various methods involved can be listed as follows:

• void moveToInsertRow()

 moves the cursor to the insert row. The insert row is a

special row that is used for inserting new data with the updateXXX()

and insertRow() methods.

• void moveToCurrentRow()

moves the cursor back from the insert row to the row that it occupied when the

moveToInsertRow () method was called.

• void insertRow()

inserts the contents of the insert row into the database and

the result set.

• void deleteRow()

 deletes the current row from the database and the result

set.

Maya Nair
Dept of Computer Science,SIES,Sion(W)

• void updateXxx(int column, Xxx data)

• void updateXxx(String columnName, Xxx data)

(Xxx is a type such as int, double, String, Date, etc.)

 update a field in the current row of the result set.

• void updateRow()

 sends the current row updates to the database.

• void cancelRowUpdates()

 cancels the current row updates.

rs.refreshRow()

 refresh as per changes in database.

Java Transactions

If your JDBC Connection is in auto-commit mode, which it is by default,

then every SQL statement is committed to the database upon its

completion.

That may be fine for simple applications, but there are three reasons why

you may want to turn off the auto-commit and manage your own

transactions −

 To increase performance.

 To maintain the integrity of business processes.

 To use distributed transactions.

Transactions enable you to control if, and when, changes are applied to

the database. It treats a single SQL statement or a group of SQL

statements as one logical unit, and if any statement fails, the whole

transaction fails.

To enable manual- transaction support instead of the auto-commit mode

that the JDBC driver uses by default, use the Connection

object's setAutoCommit() method. If you pass a boolean false to

setAutoCommit(), you turn off auto-commit. You can pass a boolean true

to turn it back on again.

Maya Nair
Dept of Computer Science,SIES,Sion(W)

For example, if you have a Connection object named conn, code the

following to turn off auto-commit −

conn.setAutoCommit(false);

Commit & Rollback
Once you are done with your changes and you want to commit the changes

then call commit() method on connection object as follows −

conn.commit();

Otherwise, to roll back updates to the database made using the Connection

named conn, use the following code −

conn.rollback();

The following example illustrates the use of a commit and rollback object

−

try{

 //Assume a valid connection object conn

 conn.setAutoCommit(false);

 Statement stmt = conn.createStatement();

 String SQL = "INSERT INTO Employees " +

 "VALUES (106, 20, 'Rita', 'Tez')";

 stmt.executeUpdate(SQL);

 //Submit a malformed SQL statement that breaks

 String SQL = "INSERTED IN Employees " +

 "VALUES (107, 22, 'Sita', 'Singh')";

 stmt.executeUpdate(SQL);

 // If there is no error.

 conn.commit();

}catch(SQLException se){

 // If there is any error.

 conn.rollback();

Maya Nair
Dept of Computer Science,SIES,Sion(W)

}

In this case, none of the above INSERT statement would success and

everything would be rolled back.

For a better understanding, let us study the Commit - Example Code.

Using Savepoints
The new JDBC 3.0 Savepoint interface gives you the additional

transactional control. Most modern DBMS, support savepoints within their

environments such as Oracle's PL/SQL.

When you set a savepoint you define a logical rollback point within a

transaction. If an error occurs past a savepoint, you can use the rollback

method to undo either all the changes or only the changes made after the

savepoint.

The Connection object has two new methods that help you manage

savepoints −

 setSavepoint(String savepointName): Defines a new savepoint. It also

returns a Savepoint object.

 releaseSavepoint(Savepoint savepointName): Deletes a savepoint.

Notice that it requires a Savepoint object as a parameter. This object is usually

a savepoint generated by the setSavepoint() method.

There is one rollback (String savepointName) method, which rolls

back work to the specified savepoint.

The following example illustrates the use of a Savepoint object −

try{

 //Assume a valid connection object conn

 conn.setAutoCommit(false);

 Statement stmt = conn.createStatement();

 //set a Savepoint

 Savepoint savepoint1 = conn.setSavepoint("Savepoint1");

 String SQL = "INSERT INTO Employees " +

 "VALUES (106, 20, 'Rita', 'Tez')";

https://www.tutorialspoint.com/jdbc/commit-rollback.htm

Maya Nair
Dept of Computer Science,SIES,Sion(W)

 stmt.executeUpdate(SQL);

 //Submit a malformed SQL statement that breaks

 String SQL = "INSERTED IN Employees " +

 "VALUES (107, 22, 'Sita', 'Tez')";

 stmt.executeUpdate(SQL);

 // If there is no error, commit the changes.

 conn.commit();

}catch(SQLException se){

 // If there is any error.

 conn.rollback(savepoint1);

}

In this case, none of the above INSERT statement would success and

everything would be rolled back.

JDBC - Batch Processing

Batch Processing allows you to group related SQL statements into a batch

and submit them with one call to the database.

When you send several SQL statements to the database at once, you

reduce the amount of communication overhead, thereby improving

performance.

 JDBC drivers are not required to support this feature. You should use

the DatabaseMetaData.supportsBatchUpdates() method to determine if the

target database supports batch update processing. The method returns true if

your JDBC driver supports this feature.

 The addBatch() method of Statement,

PreparedStatement, and CallableStatement is used to add individual

statements to the batch. The executeBatch() is used to start the execution

of all the statements grouped together.

 The executeBatch() returns an array of integers, and each element of the

array represents the update count for the respective update statement.

Maya Nair
Dept of Computer Science,SIES,Sion(W)

 Just as you can add statements to a batch for processing, you can remove

them with the clearBatch() method. This method removes all the statements

you added with the addBatch() method. However, you cannot selectively

choose which statement to remove.

Batching with Statement Object
Here is a typical sequence of steps to use Batch Processing with Statement

Object −

 Create a Statement object using either createStatement() methods.

 Set auto-commit to false using setAutoCommit().

 Add as many as SQL statements you like into batch using addBatch()method

on created statement object.

 Execute all the SQL statements using executeBatch() method on created

statement object.

 Finally, commit all the changes using commit() method.

Example

The following code snippet provides an example of a batch update using

Statement object −

// Create statement object

Statement stmt = conn.createStatement();

// Set auto-commit to false

conn.setAutoCommit(false);

// Create SQL statement

String SQL = "INSERT INTO Employees (id, first, last, age) " +

 "VALUES(200,'Zia', 'Ali', 30)";

// Add above SQL statement in the batch.

stmt.addBatch(SQL);

// Create one more SQL statement

Maya Nair
Dept of Computer Science,SIES,Sion(W)

String SQL = "INSERT INTO Employees (id, first, last, age) " +

 "VALUES(201,'Raj', 'Kumar', 35)";

// Add above SQL statement in the batch.

stmt.addBatch(SQL);

// Create one more SQL statement

String SQL = "UPDATE Employees SET age = 35 " +

 "WHERE id = 100";

// Add above SQL statement in the batch.

stmt.addBatch(SQL);

// Create an int[] to hold returned values

int[] count = stmt.executeBatch();

//Explicitly commit statements to apply changes

conn.commit();

.

Batching with PrepareStatement Object
Here is a typical sequence of steps to use Batch Processing with

PrepareStatement Object −

1. Create SQL statements with placeholders.

2. Create PrepareStatement object using either prepareStatement()methods.

3. Set auto-commit to false using setAutoCommit().

4. Add as many as SQL statements you like into batch using addBatch()method

on created statement object.

5. Execute all the SQL statements using executeBatch() method on created

statement object.

6. Finally, commit all the changes using commit() method.

Maya Nair
Dept of Computer Science,SIES,Sion(W)

The following code snippet provides an example of a batch update using

PrepareStatement object −

// Create SQL statement

String SQL = "INSERT INTO Employees (id, first, last, age) " +

 "VALUES(?, ?, ?, ?)";

// Create PrepareStatement object

PreparedStatemen pstmt = conn.prepareStatement(SQL);

//Set auto-commit to false

conn.setAutoCommit(false);

// Set the variables

pstmt.setInt(1, 400);

pstmt.setString(2, "AAA");

pstmt.setString(3, "BBB");

pstmt.setInt(4, 33);

// Add it to the batch

pstmt.addBatch();

// Set the variables

pstmt.setInt(1, 401);

pstmt.setString(2, "XXX");

pstmt.setString(3, "YYYY");

pstmt.setInt(4, 31);

// Add it to the batch

pstmt.addBatch();

//add more batches

.

Maya Nair
Dept of Computer Science,SIES,Sion(W)

.

.

.

//Create an int[] to hold returned values

int[] count = stmt.executeBatch();

//Explicitly commit statements to apply changes

conn.commit();

Using Advanced Data Types

The advanced data types introduced in this section give a relational
database more flexibility in what can be used as a value for a table
column. For example, a column can be used to store BLOB(binary large

object) values, which can store very large amounts of data as raw bytes.
A column can also be of type CLOB (character large object), which is

capable of storing very large amounts of data in character format.

Mapping Advanced Data Types

The JDBC API provides default mappings for advanced data types

specified by the SQL:2003 standard. The following list gives the data
types and the interfaces or classes to which they are mapped:

 BLOB: Blob interface

 CLOB: Clob interface
 NCLOB: NClob interface

 ARRAY: Array interface
 XML: SQLXML interface

 Structured types: Struct interface
 REF(structured type): Ref interface

 ROWID: RowId interface

 DISTINCT: Type to which the base type is mapped. For example,
a DISTINCT value based on a SQL NUMERIC type maps to

a java.math.BigDecimal type because NUMERIC maps
to BigDecimal in the Java programming language.

 DATALINK: java.net.URL object

Maya Nair
Dept of Computer Science,SIES,Sion(W)

Using Advanced Data Types

You retrieve, store, and update advanced data types the same way you
handle other data types. You use
either ResultSet.getDataType or CallableStatement.getDataType methods

to retrieve them, PreparedStatement.setDataType methods to store them,

and ResultSet.updateDataType methods to update them. (The
variable DataType is the name of a Java interface or class mapped to an

advanced data type.) Probably 90 percent of the operations performed on
advanced data types involve using the getDataType, setDataType,

and updateDataType methods. The following table shows which methods
to use:

Advanced

Data Type

getDataType Met

hod

setDataType met

hod

updateDataType Met

hod

BLOB getBlob setBlob updateBlob

CLOB getClob setClob updateClob

NCLOB getNClob setNClob updateNClob

ARRAY getArray setArray updateArray

XML getSQLXML setSQLXML updateSQLXML

Structured

type
getObject setObject updateObject

REF(structur

ed type)
getRef setRef updateRef

ROWID getRowId setRowId updateRowId

DISTINCT getBigDecimal setBigDecimal updateBigDecimal

DATALINK getURL setURL updateURL

Note: The DISTINCT data type behaves differently from other advanced
SQL data types. Being a user-defined type that is based on an already

existing built-in types, it has no interface as its mapping in the Java

programming language. Consequently, you use the method that
corresponds to the Java type on which the DISTINCT data type is based.

See Using DISTINCT Data Typefor more information.

https://docs.oracle.com/javase/tutorial/jdbc/basics/distinct.html

Maya Nair
Dept of Computer Science,SIES,Sion(W)

For example, the following code fragment retrieves a SQL ARRAY value.

For this example, suppose that the column SCORES in the
table STUDENTS contains values of type ARRAY. The variable stmt is

a Statement object.

ResultSet rs = stmt.executeQuery(
 "SELECT SCORES FROM STUDENTS " +

 "WHERE ID = 002238");
rs.next();

Array scores = rs.getArray("SCORES");

The variable scores is a logical pointer to the SQL ARRAY object stored in

the table STUDENTS in the row for student 002238.

If you want to store a value in the database, you use the
appropriate set method. For example, the following code fragment, in

which rs is a ResultSet object, stores a Clob object:

Clob notes = rs.getClob("NOTES");

PreparedStatement pstmt =
 con.prepareStatement(

 "UPDATE MARKETS SET COMMENTS = ? " +
 "WHERE SALES < 1000000");

pstmt.setClob(1, notes);
pstmt.executeUpdate();

This code sets notes as the first parameter in the update statement being
sent to the database. The Clob value designated by notes will be stored in

the table MARKETS in column COMMENTSin every row where the value in
the column SALES is less than one million.

Using Large Objects

An important feature of Blob, Clob, and NClob Java objects is that you can
manipulate them without having to bring all of their data from the
database server to your client computer. Some implementations

represent an instance of these types with a locator (logical pointer) to the
object in the database that the instance represents. Because

a BLOB, CLOB, or NCLOB SQL object may be very large, the use of
locators can make performance significantly faster. However, other

implementations fully materialize large objects on the client computer.

If you want to bring the data of a BLOB, CLOB, or NCLOB SQL value to

the client computer, use methods in the Blob, Clob, and NClob Java

Maya Nair
Dept of Computer Science,SIES,Sion(W)

interfaces that are provided for this purpose. These large object type

objects materialize the data of the objects they represent as a stream.

Adding Large Object Type Object to Database

The Clob Java object myClob contains the contents of the file specified

by fileName.

public void addRowToCoffeeDescriptions(
 String coffeeName, String fileName)

 throws SQLException {

 PreparedStatement pstmt = null;

 try {
 Clob myClob = this.con.createClob();

 Writer clobWriter = myClob.setCharacterStream(1);
 String str = this.readFile(fileName, clobWriter);

 System.out.println("Wrote the following: " +
 clobWriter.toString());

 if (this.settings.dbms.equals("mysql")) {

 System.out.println(
 "MySQL, setting String in Clob " +

 "object with setString method");
 myClob.setString(1, str);

 }
 System.out.println("Length of Clob: " + myClob.length());

 String sql = "INSERT INTO COFFEE_DESCRIPTIONS " +
 "VALUES(?,?)";

 pstmt = this.con.prepareStatement(sql);

 pstmt.setString(1, coffeeName);
 pstmt.setClob(2, myClob);

 pstmt.executeUpdate();
 } catch (SQLException sqlex) {

 JDBCTutorialUtilities.printSQLException(sqlex);
 } catch (Exception ex) {

 System.out.println("Unexpected exception: " + ex.toString());
 } finally {

 if (pstmt != null)pstmt.close();
 }

}

The following line creates a Clob Java object:

Clob myClob = this.con.createClob();

Maya Nair
Dept of Computer Science,SIES,Sion(W)

The following line retrieves a stream (in this case a Writer object

named clobWriter) that is used to write a stream of characters to
the Clob Java object myClob. The method ClobSample.readFile writes this

stream of characters; the stream is from the file specified by
the String fileName. The method argument 1 indicates that

the Writer object will start writing the stream of characters at the
beginning of the Clob value:

Writer clobWriter = myClob.setCharacterStream(1);

The ClobSample.readFile method reads the file line-by-line specified by
the file fileName and writes it to the Writer object specified by writerArg:

private String readFile(String fileName, Writer writerArg)

 throws FileNotFoundException, IOException {

 BufferedReader br = new BufferedReader(new FileReader(fileName));
 String nextLine = "";

 StringBuffer sb = new StringBuffer();

 while ((nextLine = br.readLine()) != null) {
 System.out.println("Writing: " + nextLine);

 writerArg.write(nextLine);
 sb.append(nextLine);

 }
 // Convert the content into to a string

 String clobData = sb.toString();

 // Return the data.
 return clobData;

}

The following excerpt creates a PreparedStatement object pstmt that

inserts the Clob Java object myClob into COFFEE_DESCRIPTIONS:

PreparedStatement pstmt = null;
// ...

String sql = "INSERT INTO COFFEE_DESCRIPTIONS VALUES(?,?)";
pstmt = this.con.prepareStatement(sql);

pstmt.setString(1, coffeeName);
pstmt.setClob(2, myClob);

pstmt.executeUpdate();

Retrieving CLOB Values

The method ClobSample.retrieveExcerpt retrieves the CLOB SQL value
stored in the COF_DESC column of COFFEE_DESCRIPTIONS from the row

whose column value COF_NAME is equal to the String value specified by
the coffeeName parameter:

https://docs.oracle.com/javase/tutorial/jdbc/basics/gettingstarted.html

Maya Nair
Dept of Computer Science,SIES,Sion(W)

public String retrieveExcerpt(String coffeeName, int numChar)

 throws SQLException {

 String description = null;
 Clob myClob = null;

 PreparedStatement pstmt = null;

 try {
 String sql =

 "select COF_DESC " +
 "from COFFEE_DESCRIPTIONS " +

 "where COF_NAME = ?";

 pstmt = this.con.prepareStatement(sql);
 pstmt.setString(1, coffeeName);

 ResultSet rs = pstmt.executeQuery();

 if (rs.next()) {

 myClob = rs.getClob(1);
 System.out.println("Length of retrieved Clob: " +

 myClob.length());
 }

 description = myClob.getSubString(1, numChar);
 } catch (SQLException sqlex) {

 JDBCTutorialUtilities.printSQLException(sqlex);
 } catch (Exception ex) {

 System.out.println("Unexpected exception: " + ex.toString());
 } finally {

 if (pstmt != null) pstmt.close();
 }

 return description;

}

The following line retrieves the Clob Java value from
the ResultSet object rs:

myClob = rs.getClob(1);

The following line retrieves a substring from the myClob object. The
substring begins at the first character of the value of myClob and has up

to the number of consecutive characters specified in numChar,
where numChar is an integer.

description = myClob.getSubString(1, numChar);

Maya Nair
Dept of Computer Science,SIES,Sion(W)

Adding and Retrieving BLOB Objects

Adding and retrieving BLOB SQL objects is similar to adding and
retrieving CLOB SQL objects. Use the Blob.setBinaryStream method to
retrieve an OutputStream object to write the BLOBSQL value that

the Blob Java object (which called the method) represents.

Releasing Resources Held by Large Objects

Blob, Clob, and NClob Java objects remain valid for at least the duration
of the transaction in which they are created. This could potentially result

in an application running out of resources during a long running
transaction. Applications may release Blob, Clob, and NClob resources by

invoking their free method.

In the following excerpt, the method Clob.free is called to release the

resources held for a previously created Clob object:

Clob aClob = con.createClob();
int numWritten = aClob.setString(1, val);

aClob.free();

